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In this paper we use the boundary integral method to model the non-spherical collapse
of bubbles excited by lithotripter shock waves near a rigid boundary. The waves we
consider are representative of those developed by shock wave lithotripsy or shock
wave therapy devices, and the rigid boundaries we consider are representative of
kidney stones and reflective bony tissue. This study differs from previous studies in
that we account for the reflection of the incident wave and also the asymmetry of the
collapse caused by the presence of the rigid surface. The presence of the boundary
causes interference between reflected and incident waves. Quantities such as kinetic
energy, Kelvin impulse and centroid translation are calculated in order to illuminate
the physics of the collapse process. The main finding is that the dynamics of the
bubble collapse depend strongly on the distance of the bubble relative to the wall
when reflection is taken into account, but much less so when reflection is omitted from
the model. The reflection enhances the expansion and subsequent collapse of bubbles
located near the boundary owing to constructive interference between incident and
reflected waves; however, further from the boundary, the dynamics of collapse are
suppressed owing to destructive interference of these two waves. This result holds
regardless of the initial radius of the bubble or its initial state at the time of impact
with the lithotripter shock wave. Also, the work done by the lithotripter shock wave on
the bubble is shown to predict strongly the maximum bubble volume regardless of the
standoff distance and the presence or absence of reflection; furthermore, allowing for
non-sphericity, these predictions match almost exactly those of a previously developed
spherical model.

1. Introduction
Shock wave lithotripsy (SWL) is an established medical procedure for destroying

kidney stones through the focusing of shock waves inside the body. These shock waves
have an initial short compressive peak followed by a much longer rarefaction. This
rarefaction can induce cavitation, which is believed to be an important contributor
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to stone comminution (Pishchalnikov 2003). A mechanism by which bubbles can
damage nearby surfaces is through the generation of high-speed jets. For collapsing
bubbles, the presence of a boundary creates an asymmetry in the flow field that
causes non-spherical deformation and jetting towards the surface, as shown in both
experiments (Crum 1979; Lindau & Lauterborn 2003; Sankin & Zhong 2006) and
numerical simulations (Blake & Gibson 1987; Best & Kucera 1992). In addition, for
bubbles stimulated by shock waves in an infinite fluid, the imposed pressure gradients
can induce jetting in the direction of shock propagation. For example, Ohl & Ikink
(2003) showed that microbubbles subject to travelling shocks collapse, then translate
and form a thin high-speed jet along the direction of shock propagation. This jet can
penetrate the opposite surface of the bubble and shed a small satellite bubble. Sankin
et al. (2005) forced laser-generated bubbles with a lithotripter shock wave (LSW) at
various stages during its ensuing oscillation, demonstrating that the bubble collapses
non-spherically and forms a jet in each case.

In the case of SWL, both the presence of the rigid boundary and the propagating
LSW may induce jetting of nearby bubbles. Jet formation from shock–bubble
interaction has been linked to surface damage by Tomita & Shima (1986) who
demonstrated damage pit formation in photoelastic materials owing to non-spherical
bubble collapse. In addition, Kodama & Tomita (2000) showed the penetration of jets
into gelatin owing to shock waves impinging on air bubbles attached to the surface.
Other studies demonstrating the damage potential of shock–bubble interaction include
those of Philipp et al. (1993) and Bourne & Field (1995). Thus, it follows that non-
spherical bubble collapses are a likely contributor to stone damage in SWL.

Furthermore, the application of shock waves has been shown to enhance the
damage potential of collapsing bubbles. Kodama & Tomita (2000) demonstrated that
laser-generated cavitation bubbles near a gelatin surface did not generate significant
liquid jets; conversely, air bubbles attached to the gelatin, which interacted with
shock waves, created jets that subsequently penetrated the gelatin. Similarly, Sankin
& Zhong (2006) showed that laser-generated bubbles near a silicone rubber membrane
can produce deeper jet penetration when forced with a shock wave as compared to
freely oscillating bubbles.

Various numerical studies on shock–bubble interaction are relevant to the present
work. Ding & Gracewski (1996) modelled the impact of shock waves on gas bubbles
using a finite-volume method whereas Klaseboer et al. (2006) conducted a similar
study using the boundary integral method (BIM). Both of these works assumed
the bubble to be far from any rigid boundaries and used a step-like model for the
incident shock, which is not representative of shock wave profiles in lithotripsy. Other
workers have modelled bubble collapses in the vicinity of a lithotripsy stone, but they
did not account for either the reflection of the LSW from the stone surface or the
non-spherical asymmetry of the bubble collapse (Zabolotskaya et al. 2004; Hamilton
et al. 2005). As we demonstrate, both of these effects have a profound influence
on the bubble dynamics and should be considered together in any study of stone
comminution.

In Iloreta, Fung & Szeri (2008, hereinafter referred to as Part 1), the flow and
pressure fields due to an LSW impinging and reflecting from an obstruction were
modelled to replicate conditions typical of SWL. The properties of the obstruction
were chosen to simulate the effect of a typical kidney stone on the surrounding fluid.
In addition, the dynamics of spherical bubbles in the region near the stone were
investigated. While the bubble is nearly spherical during expansion, the presence of
a rigid boundary can cause severe asymmetry in the bubble shape during collapse,
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as discussed above. In Part 2, we consider non-spherical collapses and the associated
energetics. The rigid boundary has two principal effects on the bubble dynamics:
(i) it causes reflection of the incident LSW, which affects the work input into the
bubble prior to collapse; and (ii) it creates an asymmetry in the flow field that causes
the bubble to collapse non-spherically. Our goal here is to understand how these two
mechanisms influence the bubble dynamics and energetics as a function of distance
from the stone surface.

2. Methodology
2.1. Physical assumptions

Owing to the rapid collapse of bubbles in SWL, the flow is dominated by inertia,
and viscous forces are relatively weak. For a typical collapse considered here, the
bubble has a maximum radius Rm ∼ 1000 μm with a collapse time τc ∼ 100 μs. We
may estimate a Reynolds number Re for the flow, assuming typical properties
of water, using the velocity scale U = Rm/τc and the length scale L = Rm as
Re =UL/ν = (R2

m/τc)/ν ≈ 104. In addition, assuming the fluid is initially quiescent,
vorticity has little time to propagate from the surface of the bubble and the
boundary-layer thickness δv is relatively thin. This can be quantified through
δv/Rm ∼ √

ντc/Rm = 1/
√

Re ≈ 0.01. We may therefore regard the fluid surrounding
the bubble as irrotational, ∇ × v = 0, allowing us to represent the velocity v as the
gradient of the scalar potential φ: v = ∇φ.

Although the bubble dynamics are fast, the speed of sound in the liquid is
much faster, allowing us to exploit the methods of Prosperetti & Lezzi (1986) who
decomposed the fluid into two domains: an incompressible domain in the region near
the bubble and a compressible region in the far field. We may assume the effects
of the LSW are imposed from the far field onto the bubble, but that the behaviour of
the fluid surrounding the bubble is essentially incompressible, i.e. ∇ · v = 0. The fluid
mechanics can be then modelled using potential flow theory and reduced to solving
the Laplace equation for φ,

∇2φ = 0. (1)

This model holds well while the bubble wall velocity is much less than the speed of
sound, but loses validity once this is no longer the case. For example, in some cases
of shock-induced bubble collapse, jet velocities can approach the speed of sound of
the fluid, as shown by Philipp et al. (1993) and Ohl & Ikink (2003), or even exceed
it, as predicted by Ding & Gracewski (1996) and Klaseboer et al. (2006) and shown
by Bourne & Field (1992). For many of the bubbles considered here, the jet velocity
is well below the speed of sound, but can approach, or even exceed it, in some cases.
In these latter situations, however, during the majority of the oscillation, the flow
velocity is still well below the speed of sound, thus, potential theory is valid. The
limitations of the potential flow assumption are discussed further along with the jet
velocity in § 4.6.

2.2. Numerical model

In modelling the collapse of non-spherical bubbles near a rigid boundary, we use
a numerical model based on the BIM (Taib 1985; Blake, Taib & Doherty 1986).
This model is capable of modelling axisymmetric bubble collapses and is identical in
every respect to that described in Calvisi et al. (2007) save that a rigid boundary of
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infinite extent is included through use of the method of images (Blake et al. 1986).
To review briefly, the BIM is an efficient method of solving the Laplace equation, (1),
for φ in the fluid surrounding the bubble. The efficacy lies in the need to mesh only
the bubble surface, which can be reduced to a one-dimensional curve owing to the
axisymmetry of the bubble geometry. The rigid boundary is modelled through the
use of an image bubble of equal size and distance located on the opposite side of the
boundary. Given the initial values of the potential on the bubble surface, the normal
velocity at this surface can be determined through an integral solution of (1) (Blake et
al. 1986). The bubble shape is then advanced using a kinematic boundary condition
specifying that a point on the bubble surface convects with the local fluid velocity. The

dimensionless potential φ̃ is updated at the next time step using the dynamic boundary
condition

Dφ̃

Dt̃
=

1

2
|∇φ̃|2 − pb

p0

+
2κ

We
+

p∞(z, t)

p0

, (2)

where p0 is the hydrostatic pressure, pb the pressure inside the bubble (gas plus
vapour), and p∞ (z, t) is the far-field pressure, which may vary along the direction of
LSW propagation z, as well as with time t . In addition, because of the small size of the
bubbles, surface tension is appreciable and is represented by the second to last term
in (2), where κ is the dimensionless mean curvature of the bubble surface, and We is
the Weber number, defined as We ≡ Rmp0/σ , where σ is the surface tension. Equation
(2) is derived from the Bernoulli equation for unsteady flow and incorporates all
of the important physical processes into the model. The scales used to render (2)
dimensionless are discussed in § 2.2.1.

Our BIM model uses a van der Waals equation of state for the bubble interior,
owing to the intense nature of the collapses investigated, as described in Calvisi
et al. (2007). The bubble interior is also assumed to consist of a uniform mixture of
vapour and inert gas (argon). We include the effects of heat transfer across the bubble
surface along with vapour transport (evaporation and condensation) by the method
of Szeri et al. (2003). During the expansion phase of the bubble oscillation and the
early stages of collapse, the bubble dynamics are slow relative to the processes of heat
and mass transfer; therefore, it is assumed the bubble interior remains isothermal
relative to the surrounding fluid, and that vapour can freely evaporate and condense
at the bubble wall. We refer to this as the phase of ‘slow’ dynamics. In the latter
stages of collapse, owing to the rapid bubble motion, heat and vapour do not have
sufficient time to diffuse across the bubble interior. On this short time scale, the bubble
is effectively adiabatic and vapour transport is negligible. This phase of the bubble
oscillation is referred to as that of ‘rapid’ dynamics. The amount of water vapour at
the beginning of the rapid stage is fixed, but can dissociate and undergo chemical
reactions if the interior temperature exceeds 1000 K. These chemical reactions are
mainly endothermic in nature and tend to lower the internal bubble temperature
(Storey & Szeri 2000).

We are interested in measures of the fluid dynamics that may intuitively relate to
damage at the surface of the kidney stone. Two such quantities are the kinetic energy
and the Kelvin impulse, the latter of which can be regarded as a measure of the
global fluid momentum at any instant of time. These quantities are calculated only
for the fluid exterior to the bubble as they are negligible for the interior gas owing
to its much smaller relative density. For a strictly spherical oscillation in an infinite
fluid, the Kelvin impulse is identically zero, whereas kinetic energy is generally not;
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h

z = 0

Figure 1. A schematic of the initial position of the bubble located a distance h from a rigid
surface, which is positioned at z = 0. The positive z-direction is upwards.

but for a non-spherical collapse, both quantities are typically non-zero. Hence, they
are independent quantities and, in addition, the Kelvin impulse provides a measure of
the asymmetry of the bubble. While the Kelvin impulse I is a vector quantity, owing
to the axisymmetry of the problem, only the component normal to the wall, Iz, is
non-zero (see figure 1 for the geometry of the problem). Use of the BIM then allows
for Iz and the kinetic energy Ek to be calculated in a straightforward manner as
integrals over the surface area S of the bubble (Pearson, Blake & Otto 2004; Calvisi
2006) using the following formulae:

Ek =
ρ

2

∫
S

φ
∂φ

∂n
dS, (3)

Iz = −ρ ez·
∫

S

φ n dS, (4)

where ρ is the fluid density, ∂φ/∂n is the normal velocity, ez is a unit vector in the
z-direction, and n is a surface normal vector defined as pointing into the bubble
(away from the fluid), which leads to the minus sign in (4).

In order to model the influence of the LSW on the bubble, we input the pressure
field data generated in Part 1 for the LSW–kidney stone interaction into our BIM
model through p∞(z, t) in (2) by the method of Calvisi et al. (2007). The wavelength
of the incident LSW (compressive and tensile portions combined) is �1 cm, which
is much larger than the initial size of the bubble (∼25 μm). Also, the time scale of
the LSW (∼10 μs) is much shorter than the expansion time of the bubble (∼100 μs);
hence, the incident and reflected waves pass long before the bubble reaches maximum
volume. The majority of bubble translation occurs near the end of collapse when
the jet forms and the bubble volume is shrinking rapidly and asymmetrically. Thus,
while the LSW is acting on the bubble, it is essentially spherical, stationary and its
size is close to its initial volume, much smaller than the wavelength of the LSW
itself. Therefore, we neglect the spatial gradient of the pressure field and drive the
bubble with the pressure calculated in Part 1 at the bubble’s initial position. This is
equivalent to assuming the pressure imposed by the LSW is spherically symmetric with
respect to the bubble. We use only pressure data along the stone’s axis of symmetry
where the assumption of bubble axisymmetry is expected to hold. It is important to
note that, in our model, non-spherical shape perturbations of the bubble are induced
by the asymmetry in the flow field created by the nearby rigid boundary and not
by the LSW itself. The effect of the axial spatial gradient of the LSW, however, will
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be explored in § 4.2 by incorporating it back into the model through p∞(z, t) in (2).
We also neglect the radial gradient in the pressure field because, during its interaction
with the LSW, the bubble size (∼25 μm) is small compared to the radius of the stone
(3.3 mm) assumed in Part 1.

In addition, we use data on the proximal side of the stone as this is expected to lead
to the most intense collapses. This is supported by Pishchalnikov et al. (2003) who
demonstrated through experiments that bubble clusters and subsequent damage are
much greater on the proximal side of the stone than on the distal side. Furthermore,
the deepest rarefaction, and probably the most intense collapses, occur along the axis
of symmetry – where we assume the bubbles to be located – owing to constructive
interference of the edge wave propagating radially inward from the edge of the
cylindrical stone (see Part 1 for a discussion of this effect).

In essence, we are coupling together two different models and exploiting the best
features of each in order to understand the physics of non-spherical bubble collapse
due to interaction with an LSW near a substrate. The compressible Euler equations
are solved in Part 1 to determine the pressure field in the vicinity of a kidney stone
interacting with an LSW. We then input these data into the BIM model, which is
very efficient at tracking moving interfaces, to simulate the collapse of non-spherical
bubbles owing to the asymmetry imposed by the rigid surface. The pressure data
developed in Part 1 account for density variations due to the incident LSW, but as the
BIM is based on the assumption of an incompressible exterior liquid, it accounts only
for pressure changes due to incompressible liquid dynamics associated with bubble
motions. However, we do not expect this simplification to impact significantly on our
results because, over the majority of the bubble oscillation, we can regard the near field
of the fluid domain surrounding the bubble as incompressible owing to the relatively
low flow velocity, as discussed in § 2.1. In certain cases, though, compressible effects
will become appreciable during the latter stages of collapse when the flow velocity
approaches the speed of sound. The rapid bubble motion will then lead to some
energy loss through radiation of acoustic energy, but this will predominantly occur at
jet impact – as shown in the experiments of Lindau & Lauterborn (2003) and Sankin
et al. (2005) – and will therefore only affect the dynamics subsequent to this event.
Some energy is also radiated from the bubble during the initial interaction between
the LSW and the bubble; however, it is much smaller than that emitted at collapse
(Ding & Gracewski 1996). As we limit our simulations to the singly connected phase
of the oscillation (to be explained below), the small energy loss during this period will
have little effect on our results. These arguments are supported by Klaseboer et al.
(2007) who demonstrated the ability of the BIM to model accurately the dynamics of
bubbles interacting with an LSW. In this work, an axisymmetric model based on the
BIM, similar to the one used in this study, was compared to results of the experiments
of Sankin et al. (2005) in which oscillating bubbles were subjected to an LSW. The
numerical results from the BIM model match the experiments well, both qualitatively
and quantitatively, despite being based on the assumption of an incompressible fluid.
Based on this, we may conclude that the process of LSW–bubble interaction is
dominated by inertia and that compressible effects are of minor importance. We defer
further discussion of compressible effects to § 4.6.

There are some limitations to the use of our BIM model for this application. First,
our BIM model is restricted to axisymmetric bubble shapes and cannot model three-
dimensional effects as would be induced by nearby bubbles, irregular surfaces, or
bubbles collapsing off the axis of symmetry. Secondly, the pressure data developed in
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Scale Symbol/form Numerical value

Length Rm 1168.83 μm
Pressure p0 101 325 Pa
Density ρ 998.0 kgm−3

Time Rm

√
ρ/p0 116.0 μs

Energy p0R
3
m 161.8 μJ

Impulse R3
m

√
ρ p0 16.06 μN s

Table 1. The relevant physical scales used in this study. Note that all scales of interest can be
formed from the length, pressure, and density scales.

Part 1 assume a kidney stone of finite size, yet our BIM model assumes the boundary
is of infinite extent. This assumption is made to allow the use of an image system to
account for the stone surface (Blake et al. 1986), and is considered valid as long as
the bubble is much smaller than the lateral extent of the proximal face of the stone,
and the bubble is sufficiently close to the surface. Over the majority of the oscillation,
the former assumption holds; however, near maximum volume, the effective diameter
of the bubble can reach about one-third that of the stone. Also, at the larger standoff
distances considered here, the bubble distance is approximately one diameter away.
In these cases, the use of an infinite surface may cause the results to deviate from
that of a finite surface. It is important to note that the effect of a finite surface is
included in the pressure data used to force the bubble, for instance, incorporating the
effect of the edge wave caused by the stone. More work must be done to understand
the influence of a finite stone on the BIM calculation.

2.2.1. Dimensionless variables

We choose for the length scale Rm = 1168.83 μm, where Rm is the approximate
maximum radius of a bubble located about 1 mm away from the stone and that
is driven by the rarefaction following the reflected compressive wave. This specific
number is chosen as it divides evenly over the mesh used in Part 1 to generate the
pressure field. We also use as scales the hydrostatic pressure, p0, and the density of
water under normal atmospheric conditions, ρ. These three scales – Rm, p0 and ρ –
allow us to form all other scales of relevance to this problem as shown in table 1. An
important dimensionless parameter is the relative standoff distance, γ , which is the
initial distance of the bubble centre from the rigid surface, h, divided by Rm

γ ≡ h

Rm

. (5)

A schematic of the initial position of the bubble relative to the wall is shown in
figure 1.

2.3. Forcing due to the LSW

The presence of the wall has two principal effects on a bubble: first, it creates a
reflected wave that alters the pressure field in the vicinity of the wall; second, it
induces non-spherical collapse and jetting through the asymmetry in the domain
occupied by the fluid. In order to isolate the effect of the reflection from that of
the asymmetry, we use two separate pressure waveforms to excite the bubble: one
that includes the combined effect of both the incident and reflected waves due to
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Figure 2. LSW pressure vs. time profiles along the axis of symmetry of the stone including
reflection: (a) plots of pressure vs. time at the standoff distances, γ = 1.0, 3.0, 5.0; (b) plot
of only the rarefaction portion of the LSW following the second compressive peak in (a) for
γ = 1.0, 2.0, 3.0, 4.0, 5.0. The curves in (b) are shifted in time so as to start at t = 0. In general,
the rarefaction depth steadily increases with decreasing γ , owing to constructive interference
between the incident and reflected waves. These curves represent some of the pressure vs. time
profiles used to force the bubble in the simulations of Case 1.

the LSW, and a second that includes only the effect of the incident LSW. In both
cases, the bubble collapses are near a rigid boundary of infinite extent. The bubbles
are driven by variations in the far-field pressure created by the passing LSW, as
discussed in § 2.2. Plots of pressure vs. time at different standoff distances from the
wall are shown in figures 2 and 3 for the case of reflection, and figure 4 for the
case in which reflection is not considered. These pressure profiles are calculated
numerically as discussed in Part 1 and represent typical LSWs propagating towards
and focusing near a kidney stone. In all cases, the pressures shown are at points
along the symmetry axis of the stone with no bubbles present. For the case of no
reflection (figure 4), the LSW consists of a short sharp compressive peak followed
by a rarefaction (negative pressure) that persists for a substantially longer time. The
pressure then becomes positive again and oscillates about zero while steadily decaying
in amplitude. The pressure waveforms for the case of reflection (figures 2 and 3) show
that the reflected wave creates a secondary peak of reduced strength shortly after the
first, with a rarefaction following. Note that the secondary rarefaction is much deeper
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Figure 3. LSW pressure vs. time profiles along the axis of symmetry of the stone including
reflection. These curves are extracted from figure 2(a) and include data from the start of the
rarefaction following the second compressive peak to well past the end of the rarefaction. The
curves shown are for the standoff distances, γ = 1.0, 2.0, 3.0, 4.0, 5.0 and are shifted in time so
as to start at t = 0. These curves represent some of the pressure vs. time profiles used to force
the bubble in the simulations of Case 2.

than the rarefaction for the case of no reflection. This enhanced rarefaction is due
to constructive interference between the incident and reflected waves, as described in
Part 1, and causes any bubbles present to expand to a larger maximum volume and
collapse more intensely than if the wall were not present. In addition, there is much
more variation in rarefaction depth and time span with γ when reflection is present
(see figure 2b) as compared to when it is absent pressure inputs (see figure 4b).

To simulate the dynamics of bubbles subject to the pressure inputs shown in
figures 2–4, we must consider the effect of each part of the LSW on the dynamics
of the bubble. Referring to figure 2(a), we see there are five major components
of the LSW with reflection. Proceeding in order of arrival time, the LSW can be
decomposed into an incident compressive wave (ICW), incident tensile wave (ITW),
reflected compressive wave (RCW), and a secondary tensile period (STP), followed
finally by a rapidly decaying oscillatory portion we refer to as the ‘tail’. Note that
the STP includes contributions from both the incident and reflected waves, whereas
the ITW arises strictly from the incident wave. For the case without reflection, the
LSW consists of only a leading ICW, followed by an ITW, and finally the tail (see
figure 4a). We will use these terms to refer to specific portions of the LSW throughout
the rest of the paper.

We argue that in our simulations, we may neglect the effect of the ICW altogether.
In typical SWL applications, the temporal spacing between successive LSWs is ∼0.5–
1.0 s (Pishchalnikov et al. 2006), whereas bubble oscillations dampen out after a few
milliseconds at most (Matula et al. 2002). Therefore, bubbles will tend to be dissolving
when encountering the steep pressure rise of the ICW and will collapse immediately
and not contribute significantly to stone comminution owing to their small size. While
experiments by Ohl & Ikink (2003) demonstrate that stationary bubbles subjected to
an LSW in a free fluid can develop elongated high-speed jets in the direction of shock
propagation, in our study, bubbles are located too far away for this mechanism to have
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Figure 4. LSW pressure vs. time profiles along the axis of symmetry of the stone without
reflection: (a) plots of pressure vs. time at the standoff distances, γ = 1.0, 3.0, 5.0; (b) plot of
only the rarefaction portion following the incident compressive peak in (a) for γ = 1.0, 2.0,
3.0, 4.0, 5.0. The curves in (b) are shifted in time so as to start at t = 0. For the curves shown,
the rarefaction depth increases slightly with increasing γ , owing to focusing of the LSW, and
is greatest for γ = 5.0. These curves represent some of the pressure vs. time profiles used to
force the bubble in the simulations of Case 3.

any impact on cavitation erosion. To be precise, Ohl & Ikink considered bubbles with
initial radii in the range of 7–50 μm, similar to this study, and measured corresponding
jet velocities and tip lengths upwards of 150 m s−1 and 150 μm, respectively. In the
present work, we examine bubbles located ∼1–5 mm away from a rigid surface;
therefore, jets from stationary bubbles of comparable size would contribute little, if
anything, to surface damage. Furthermore, if we calculate the impulse imparted to an
initially quiescent bubble by the Bjerknes force F = −(4π/3)R3

0∇P (t) with an initial
radius R0 = 25 μm and using the pressure vs. time profile P (t) in figure 2(a), we find
that it is ∼10−10 N s. This impulse is negligible compared to the maximum Kelvin
impulse generated by bubbles expanding and collapsing after passage of the ICW,
which is of the order of ∼10−5 N s (to be discussed in § 3). This suggests that even for
bubbles located very close to the kidney stone (∼1 mm), the ICW will be a secondary
factor in inducing surface damage.
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Reflection from Starting point Portion of LSW Figure showing pressure
Case surface included? for forcing used for forcing waveforms used for forcing

1 Yes Start of STP STP only Figure 2(b)
2 Yes Start of STP STP + ‘Tail’ Figure 3
3 No Start of ITW ITW only Figure 4(b)

Table 2. The three cases of forcing used for simulations in § 3. The term ITW refers to
the incident tensile wave, STP refers to the secondary tensile period, and ‘tail’ refers to the
oscillatory portion of the LSW following the STP.

In contrast to the ICW, rarefaction during the ITW and STP intervals will tend to
cause bubbles to expand to appreciable sizes and therefore collapse with much greater
relative intensity (i.e. with larger values of kinetic energy and Kelvin impulse). As a
bubble expands, it slows while increasing the potential energy of the bubble–liquid
system. This potential energy is in turn converted to liquid kinetic energy during
the subsequent collapse phase. It thus follows that, all else being equal, the larger
the bubble expansion, the more violent the subsequent collapse and (we expect) the
greater the ensuing cavitation erosion. For the case of no reflection, we then begin our
simulations at the beginning of the ITW. For the case of reflection, we may consider
starting the simulation at either the ITW or STP. Reference to figure 2(a) makes
clear that the depth of the STP exceeds that of the ITW for the range 1.0 � γ � 5.0;
furthermore, for small values of γ , the time interval of the STP is longer than that
of the ITW as well. This suggests that the STP is likely to be the main driver of the
bubble dynamics, so for cases with reflection, we begin our simulations at the start
of this period. The influence of the ITW and RCW on the results with reflection is
investigated in § 4.4.

The next issue to clarify is when to end the pressure forcing. After passage of the
STP, the ambient pressure becomes slightly positive, but eventually decays to zero
after a few oscillations. Based on its greater magnitude, it is reasonable to assume that
the STP will have a dominant effect on bubble growth and collapse as compared to the
LSW tail. However, we test this assumption by performing simulations that include
the tail portion of the LSW. In the interest of balancing completeness with economy
of effort, we therefore consider three different cases of pressure forcing: Case 1
includes the STP for the reflected case; Case 2 includes both the STP and the tail for
the reflected case; Case 3 includes only the ITW for the case of no reflection. In each
case, the bubble is located near a rigid boundary of infinite extent. The reflection
coefficient used for Cases 1 and 2 is 0.664. Case 3 can be interpreted as collapse near
a stone with a reflection coefficient of zero, thus, all incident energy from the LSW
is absorbed. Alternatively, Case 3 may be regarded as what is obtained when the
reflection is (incorrectly) omitted. In all cases, we neglect reflections from the back
of the stone and retransmission of shock energy into the liquid as this is likely to
be negligible owing to the microheterogeneous nature of the stone (see Part 1 for
a discussion of this). The pressure vs. time curves used to force the bubble in our
simulations are shown in figure 2(b) for Case 1, figure 3 for Case 2, and figure 4(b)
for Case 3. These three cases are summarized in table 2.

The trends for Cases 1–3 in the previous figures can be illuminated through
calculating the work done by the LSW on the bubble. In Part 1, the work was
calculated for the case of a spherical bubble. Here we extend this formulation to the
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case of a non-spherical bubble through the use of

W =

∫ V2

V1

p∞ (z, t) dV =

∫ t2

t1

p∞ (z, t) V̇ (t) dt, (6)

where W is the work, V (t) is the bubble volume at any instant of time, and the
dot signifies a time derivative. The work done by the interior bubble pressure pb

is neglected in (6) as p∞ 	 pb while the LSW acts on the bubble. Owing to the
propagating LSW, the far-field pressure has a spatial gradient that varies along
the z-direction. As argued previously, the size of the bubble during interaction with
the LSW is much smaller than the wavelength of the LSW itself, thus, we can safely
neglect the spatial variation in p∞ (z, t) in calculating W . In addition, the bubble’s
translation is negligible during passage of the LSW. Therefore, in (6) we use only
the far-field pressure at the bubble’s initial position h over the entire bubble. Note
that a positive value of W corresponds to a decrease in kinetic energy and vice versa.
For example, a negative pressure (rarefaction), p∞(z, t) < 0, causes volume expansion,
V̇ > 0, leading to a negative value of W and an increase in the kinetic energy of the
fluid, as we would expect. In Cases 1–3, the net work done by the LSW is always
negative, although its magnitude may vary substantially, as will be discussed later.
Also, as the far-field pressure is essentially zero after passage of the LSW, the only
contribution to W is from the LSW itself.

2.4. Initial conditions and fluid properties

In § 2.3 it was argued that we should neglect the ICW, ITW and RCW of the reflected
LSW and begin our simulations at the start of the STP. For cases in which reflection
is neglected, simulations should begin at the start of the ITW. Determining initial
conditions for the bubble at either of these points in the LSW cycle is another matter
altogether. First, bubbles present in the urine space before LSW arrival, while most
probably in equilibrium, may have a wide range of sizes. In addition, nucleation
of additional bubbles may occur during passage of the LSW itself, either at the
stone surface or in the surrounding fluid. Bubbles that encounter the steep pressure
rise of the ICW will tend to collapse and may form jets, break up and/or reform
during passage of the ITW. The negative pressure in the ITW will cause the bubbles
to expand but, when we account for reflection, the compression of the RCW will
suppress this tendency, further complicating the dynamics. Thus, the bubble size,
shape and internal pressure may vary considerably at the beginning of the STP
(or ITW for the case of no reflection) so that determining the initial conditions is not
a trivial matter.

In Part 1, an initial radius of 4.5 μm was assumed; however, experiments by Ohl
(2002) suggest that the initial radius after passage of the shock front of an LSW is
∼40 μm. For convenience, we assume the bubble has an initial radius of 25 μm and
is in thermal and mechanical equilibrium with the surrounding fluid. The bubble is
assumed to be initially spherical as it is expected that surface tension will round out
the bubble quickly owing to any deformation caused by the leading part of the LSW.
This assumption is reasonable, as we will show in § 4.4 that bubbles may survive past
the RCW with little, if any, reduction in volume and with no apparent asphericity.
Furthermore, our choice of R0 is not critical as it was shown by Church (1989), Ohl
(2002), and Iloreta et al. (2007) that the maximum volume of a spherical bubble
interacting with an LSW is insensitive to initial size. This will be discussed further in
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§ 4.1 where we show that for non-spherical bubbles, the maximum volume and other
physical quantities of interest are also insensitive to initial radius. The state of the
bubble (e.g. in equilibrium, expanding or collapsing) when acted upon by the LSW,
however, does have some effect on our results and will be discussed in § 4.3.

In all cases we simulate a bubble collapsing in water with the following
properties: hydrostatic pressure, p0 = 101 325 Pa; density, ρ =998.0 kg m−3; surface
tension, σ = 0.0728 Nm−1; far-field temperature, T∞ =298.0 K; and speed of sound,
cL = 1500 m s−1. The bubble interior is assumed to consist of water vapour plus argon
(for convenience) with a ratio of specific heats of 1.667 and molecular weight of 39.95 g
mol−1. Because a great quantity of vapour rapidly enters the expanding bubble, the
vapour pressure greatly exceeds that due to the gas over almost the entire oscillation;
therefore, the identity of the non-condensable gas (e.g. argon, air, nitrogen, etc.) is of
little consequence. The initial vapour pressure is chosen to equal the saturated value
at the far-field temperature T∞.

2.5. Non-spherical bubble dynamics

A spherical bubble initially in thermal and mechanical equilibrium starts expanding
upon interaction with the STP owing to the local negative pressure. This bubble
continues expanding long after the LSW passes and eventually slows its expansion,
achieves maximum volume, reverses direction, and collapses upon itself. During
collapse, the bubble is drawn toward the rigid boundary as is well known. The
presence of the wall causes the bubble to collapse non-spherically by inducing a jet to
form on the distal side (relative to the rigid boundary) of the bubble (Blake et al. 1986;
Lindau & Lauterborn 2003). This jet moves towards the rigid boundary along the
axis of symmetry of the bubble and, if the collapse is sufficiently intense, penetrates
through the bubble to the opposite side. If this occurs, the bubble undergoes a
transition from a singly connected to a toroidal geometry. Calvisi et al. (2007) shows
a typical bubble immediately before and after jet impact (also see figure 8).

The BIM model used in this study is capable of performing the conversion to a
torus and continuing the simulation through this stage. The model uses the method
of Best (1993), which removes a small section of the bubble between the bottom
of the penetrating jet and the surface below and joins the two surfaces together
(see Calvisi et al. 2007). Both the total energy and the Kelvin impulse are assumed
to be conserved in the transition process. While it is understood that energy will
be lost during jet impact owing to radiation of acoustic and/or shock waves and
other dissipative processes, the assumption of energy conservation is used to simplify
the analysis. Because of these dissipative mechanisms, and because the bubble starts
re-expanding and the wall velocity slows almost immediately after jet impact, it is
expected that both kinetic energy and Kelvin impulse of the liquid will achieve their
maxima while the bubble is singly connected; hence, these calculations are not carried
into the toroidal stage. Instead, we stop the simulation when the jet is within a
specified (small) distance of the opposite bubble wall, using only quantities calculated
during the singly connected phase.

In calculating kinetic energy and Kelvin impulse, we do so for the entire liquid
domain and do not distinguish the contribution of the jet from the remainder of
the liquid. Pearson et al. (2004) demonstrated that for the most vigourous collapses,
approximately 30 % of the total kinetic energy and 50 % of the Kelvin impulse is
manifested in the jet.
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Figure 5. Plots of various physical quantities vs. time for Case 1 (γ = 1.0). The volume for
(a) and the time in (a)–(d ) are made dimensionless by the length and time scales, respectively,
in table 1. The quantities in (b)–(d) are all normalized so that the maximum is unity. (a)
Volume vs. time; (b) normalized kinetic energy (solid) and volume (dashed) vs. time; (c)
normalized (absolute value of) Kelvin impulse (solid) and volume (dashed) vs. time; (d )
normalized centroid position (solid) and volume (dashed) vs. time. The dot in (a) denotes the
time of transition from slow to rapid thermodynamics as described in § 2.2. Plots of the same
quantities vs. time for Case 3 are qualitatively similar to those of Case 1.

3. Results
In this section, we investigate the dynamics of LSW-induced bubble collapses as a

function of distance from a nearby rigid boundary. Typical plots of volume, kinetic
energy, Kelvin impulse and centroid position vs. time are shown for Case 1 in figure 5.
Note that we plot the absolute value of the Kelvin impulse whereas it is actually
negative in value because the bubble is drawn towards the rigid boundary in the
negative z-direction (see figure 1). The work input of the STP the leading portion of
the pressure input) causes volume expansion and a rapid increase in kinetic energy
of the liquid. After the STP passes, the kinetic energy begins to decay to zero as
expansion slows and the bubble approaches its maximum volume when the liquid
becomes momentarily stationary. During collapse, the bubble wall accelerates inward
and the kinetic energy again increases. For Cases 1 and 3, the total energy of the
system after the passage of the STP is effectively conserved as the tail is not included
in the forcing. Therefore, upon collapse, the kinetic energy rises to near the first peak
(see figure 5b). The slight shortfall in kinetic energy upon collapse is due to conversion
of some of the kinetic energy into thermal energy of the bubble contents (see Calvisi
et al. 2007 for a discussion of this phenomenon). The bubble centroid translates
only slightly during the early stages of the oscillation, as assumed earlier, but moves
rapidly towards the rigid boundary during the latter stages as the kinetic energy and
Kelvin impulse increase sharply. The plots in figure 5 are qualitatively similar for all
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Figure 6. Plots of various physical quantities vs. time for Case 2 (γ = 1.0). The scales
are the same as in figure 5. (a) Volume vs. time; (b) normalized kinetic energy (solid)
and volume (dashed) vs. time; (c) normalized (absolute value of) Kelvin impulse (solid) and
volume (dashed) vs. time; (d ) normalized centroid position (solid) and volume (dashed) vs.
time. The dot in (a) denotes the time of transition from slow to rapid thermodynamics as
described in § 2.2.

simulations performed in Cases 1 and 3 where only the negative pressure of the STP
is used to excite the bubble.

In Case 2, the inclusion of the tail portion of the LSW leads to a slightly different
behaviour of the bubble. As in Cases 1 and 3, the kinetic energy rises rapidly owing to
the STP, but the positive pressure from the tail portion inhibits further bubble growth,
leading to a smaller maximum volume and substantially reduced kinetic energy upon
collapse (see figure 6). Note that the action of the tail also causes a local dip in kinetic
energy during the expansion phase of the bubble (see figure 6b).

3.1. Influence of the rigid boundary on collapse

The proximity of the rigid boundary has a profound effect on the bubble shape and
the dynamics of the collapse (Pearson et al. 2004). In figure 7, we show a plot of
the bubble volume vs. time for γ = 0.7–1.6 for Case 1. These plots are similar for
Case 2 except that the maximum and minimum volumes are reduced; for Case 3,
plots of volume versus time are qualitatively similar, but the maximum and minimum
volumes vary little with γ . Note that as γ increases, the maximum volume of the
bubble decreases, as does the minimum volume at jet impact. While the difference in
maximum volume between the γ = 0.7 and γ = 1.6 cases is large, this represents a
change of only about 30 % in the effective radius. Figure 8 shows the bubble shape
at jet impact for Cases 1–3 for the same range of γ values as considered in figure 7.
For γ = 0.7–1.0, there is significant flattening of the underside of the bubble near the
wall for Cases 1 and 2, and the bubble is relatively large. As the standoff distance
increases, say γ � 1.0, a liquid layer exists between the bubble and wall, and the
underside of the bubble at jet impact becomes rounder. In addition, the size of the
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Figure 7. Overlay plots of dimensionless bubble volume vs. time for γ = 0.7, 0.8, 1.0, 1.2, 1.4
and 1.6 for Case 1. Note that as γ increases, the maximum volume of the bubble decreases
and so does the minimum volume at jet impact. The dot represents the time at which the
thermodynamics of the bubble interior switches from slow to rapid.
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Figure 8. The bubble shape and distance from the wall at jet impact: (a) Case 1; (b) Case 2;
and (c) Case 3. The same range of γ values is considered as in figure 7. The relative shapes
and positions of the bubbles are shown to scale where the length in the z-direction is made
dimensionless by the length scale in table 1.

bubble shrinks with γ , and the width of the jet relative to the bubble increases. These
shapes compare very well to those shown by Tomita & Shima (1986) for bubbles
generated by spark-discharge near a solid boundary, and also to those calculated by
Pearson et al. (2004) for cavitation bubbles near a rigid surface. The shapes at jet
impact for Case 3 are smaller and the underside of the bubble is rounder for γ �
0.8. The bubble size at jet impact (for all cases) continues to decrease as the standoff



Bubbles near a rigid surface subject to a lithotripter shock wave. Part 2 79

(a)

(c)

(b)

(d)

0 1 2 3 4 5

1

2

3

4

5

6

M
ax

im
u
m

 v
o
lu

m
e

Case 1
Case 2
Case 3

1 2 3 4 50

1

2

3

4

5

6

M
ax

im
u
m

 k
in

et
ic

 e
n
er

g
y

1 2 3 4 50

1

2

3

4

K
in

et
ic

 e
n
er

g
y
 a

t 
co

ll
ap

se

Standoff distance, γ
0 1 2 3 4 5

0.1

0.3

0.5

0.7

0.9

1.1

R
at

io
 o

f 
k
in

et
ic

 e
n
er

g
ie

s

Standoff distance, γ

Figure 9. Plots of various dimensionless physical quantities vs. γ for Cases 1, 2, and 3.
The markers represent the actual values from numerical simulations and the various curves
interpolate these data points. The STP of the LSW is used as forcing input in all cases and
the initial radius of the bubble is Ro = 25 μm. The plots shown are the following: a) maximum
volume vs. γ ; b) maximum kinetic energy vs. γ (note that the curves for Cases 1 and 2 overlap);
c) kinetic energy at collapse (jet impact) vs. γ ; and d ) ratio of kinetic energy at collapse to
maximum kinetic energy vs. γ .

increases beyond γ = 1.6, but the shape remains similar to that for γ = 1.6. These
shapes are not shown because of their small size.

Through calculation of the quantities of maximum volume, kinetic energy, Kelvin
impulse, and centroid translation, we can gain a better understanding of the
relationship between the dynamics of the bubble and its relative distance to the
rigid boundary. Simulations were performed for the standoff distances in the range
of γ = 0.7–5.0. The BIM model used here has difficulty modelling bubble collapses
closer then γ =0.7 owing to the evolution of sharp surface curvature which can
lead to numerical errors. For all simulations considered here, the bubble starts off
in thermal and mechanical equilibrium with the surrounding liquid and with an
initial radius R0 = 25 μm. Aside from the type of imposed forcing (see table 2),
the only parameter varied is the standoff distance γ . For each run, the maximum
volume, maximum kinetic energy (which occurs during expansion), kinetic energy
upon collapse, maximum Kelvin impulse, and net centroid translation are calculated.
Note that all of these quantities are calculated while the bubble is singly connected.
Plots of these quantities as a function of γ are shown in figures 9 and 10 for all cases.

The maximum volume vs. γ is plotted for Cases 1–3 in figure 9(a). The maximum
volume of the bubble decreases rapidly and monotonically with increasing γ for
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Figure 10. Plots of (a) maximum (absolute value of) Kelvin impulse vs. γ , and (b) net centroid
translation of the bubble vs. γ , for Cases 1, 2, and 3. The markers represent the actual values
from numerical simulations and the various curves interpolate these data points. All quantities
are dimensionless. The input forcing and initial radius are the same as for figure 9.

Cases 1 and 2. The reduced maximum volume for Case 2 is due to the suppressing
effect of the LSW tail after passage of the STP. For Case 3 the trend is different,
showing that maximum volume is nearly constant, increasing only slightly with γ .
The near constancy in maximum volume is due to the insensitivity of the ITW depth
with respect to γ , as shown in figure 4(b). The results of Case 3 demonstrate that, for
similar forcing, the proximity of the wall has virtually no effect on maximum volume,
a similar result to that shown by Pearson et al. (2004). The strong dependence of
the maximum volume on γ for Cases 1 and 2, therefore, is due to reflection of the
LSW in the vicinity of the wall (cf. figures 2 and 3) rather than proximity of the rigid
boundary.

3.2. Bubble energetics

Kinetic energy is calculated at two points during the oscillation of the bubble: (i)
during expansion when it achieves a maximum, and (ii) at the moment of jet impact
(collapse). These quantities are plotted vs. γ in figures 9(b) and 9(c), respectively, and
display a dependence on γ similar to maximum volume. Note that the maximum
kinetic energy of Case 1 is indistinguishable from Case 2 in figure 9(b) as the work
input from the STP is the same in each case. The kinetic energy upon collapse,
however, decreases by a factor of 2–3 when the LSW tail is included. This result
mirrors the trend shown in figure 9(a) for maximum volume vs. γ : inclusion of the
tail portion in the forcing inhibits the overall growth of the bubble and, consequently,
the kinetic energy of the subsequent collapse. The results of Case 3 show that
kinetic energy is approximately constant with respect to γ , similar to maximum
volume.

Both maximum kinetic energy and kinetic energy of collapse increase monotonically
as the bubble is positioned closer to the wall. This contrasts with the results of Pearson
et al. (2004) who showed a peak in kinetic energy of the jet for γ ≈ 1.2 when using
an internal overpressure of fixed value to incite bubble expansion and collapse. Their
results imply that jetting is most efficient when the bubble is located at a standoff of
γ ≈ 1.2. Our situation differs: the forcing of the bubble is not constant, but rather
varies with standoff distance, and we calculate the kinetic energy of the entire liquid
not just the jet. Calculating the ratio of the kinetic energy at collapse to the maximum
kinetic energy, however, may yield a measure of jetting efficiency in our case. The
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kinetic energy ratio is plotted against γ in figure 9(d). For Case 1, there is a peak in
the kinetic energy ratio at γ = 1.2 and for Case 2 it occurs around γ ≈ 1.0, similar to
the findings of Pearson et al. (2004). After the peak, the kinetic energy ratio for Case 1
is approximately constant with γ . For Case 3, ratio of the kinetic energies has a slight
peak for γ ≈ 1.0, but then drops steadily with increasing γ .

The Kelvin impulse yields insight into the non-sphericity of bubble collapse and
the degree of jetting that cannot be quantified by kinetic energy, as discussed in § 2.2.
For the collapses considered here, the (absolute value of) Kelvin impulse increases
steadily with time, rising rapidly during the expansion, levelling off around the time
of maximum volume, and then increasing rapidly again during the collapse phase
(see figures 5c and 6c). Therefore, the maximum (absolute value of) Kelvin impulse
always occurs at jet impact and these values are plotted in figure 10(a) for Cases 1–3.
In each case, the Kelvin impulse decreases rapidly with increasing standoff distance
demonstrating that the proximity of the rigid boundary has a very strong influence
on the jetting process during collapse. In addition, the inclusion of the tail segment
of the LSW (Case 2) reduces the maximum Kelvin impulse by a factor greater than
two near the wall as compared to the case where only the STP is used to drive
the bubble (Case 1). Case 3 has the lowest Kelvin impulse for low values of γ . As
the bubble standoff is increase the collapse becomes approximately spherical and the
Kelvin impulse approaches zero.

By comparing Cases 1 and 2 to Case 3 in figures 9(a–c) and 10(a), it is clear that
reflection of the LSW enhances the maximum volume of the bubble and the kinetic
energy and Kelvin impulse of the collapse in the vicinity of the wall. Away from the
wall (i.e. for higher values of γ ), the situation is reversed in that these quantities are
greater when reflection is not included (Case 3), with the exception of the Kelvin
impulse, which approaches zero in all cases as γ increases. The trend in the near
region is due to constructive interference between the incident and reflected waves,
which leads to a deeper rarefaction and enhanced bubble dynamics. Further from
the surface, the incident and reflected waves interfere destructively, resulting in a
suppression of bubble dynamics.

Our results for maximum volume, kinetic energy, and Kelvin impulse compare
favourably to the experiments of Sankin & Zhong (2006) who used shock waves to
impact laser-generated bubbles near a silicone rubber membrane and measured the
subsequent penetration of the ensuing jet. The penetration depth reached a maximum
for values of γ ≈ 0.7 and declined steadily for higher γ , similar to the trends observed
in figures 9(a–c) and 10(a).

3.3. Bubble translation

The asymmetry in the flow field created by a rigid surface causes a bubble collapsing
nearby to translate toward it. In figure 10(b), we show the net translation of the bubble
centroid (from the start of the simulation until the moment of jet impact) versus γ for
all three cases considered here. For Cases 1 and 2, the centroid translation achieves
a peak for γ ≈ 1.0 and then steadily decreases for higher γ ; in Case 3, centroid
translation does not have a peak but declines after γ = 0.8. Essentially, the closer the
bubble is to the wall, the more it is drawn toward it during collapse. If the bubble
is too close, however, the wall apparently limits the centroid translation, giving rise
to the peak around γ ≈ 1.0 for Cases 1 and 2. For higher γ values, the translation
of Case 3 exceeds that of both Cases 1 and 2, similar to the behaviour of maximum
volume and kinetic energy.
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Figure 11. Plots of the dimensionless net work done by the LSW on the bubble vs. γ for
Cases 1, 2 and 3. The markers represent the actual values from numerical simulations and the
various curves interpolate these data points.

3.4. The role of work done by the LSW

The trends for Cases 1–3 in the previous figures can be illuminated through calculating
the work done by the LSW on the bubble using (6). This quantity is negative for
all the cases considered here, but, for convenience, we refer to the net work done
by the LSW as a positive quantity hereinafter. The (absolute value of) work as a
function of γ is shown in figure 11 for all three cases. The trends in work are similar
to that of the maximum volume of the bubble: the work for Cases 1 and 2 decreases
steadily with increasing γ , whereas the work for Case 3 is roughly constant. The net
work done by the forcing in Case 2 is less than that of Case 1 for all γ owing to the
compressive work done by the tail. However, it is clear that for lower values of γ , the
work input for both Cases 1 and 2 exceeds that of Case 3, leading to more intense
collapses and higher kinetic energy and Kelvin impulse in this regime, as shown in
figures 9(b–c) and 10(a). Further away from the rigid boundary, the work input is
greatest for Case 3. The trends in work input vs. γ for all cases follow directly from
the effects of constructive and destructive interference of the incident and reflected
waves as evidenced in the different plots of pressure vs. time shown in figures 2(b),
3 and 4(b). In the first two of these figures, the depth and time span of the STP
decrease significantly with increasing γ leading to the large decrease in work input
with respect to γ for Cases 1 and 2. In contrast, the pressure profile of the ITW
in Case 3 has little dependence on γ , therefore, so does the work input shown in
figure 11.

Now that we have a measure of work input, we can revisit the results shown in
figures 9 and 10 and describe them in terms of an energy balance. The work input
from the STP is the same in Cases 1 and 2 whereas Case 2 includes inhibitory
work from the predominantly compressive tail segment of the LSW. The net work
done by the STP acting on the bubble goes into increasing the kinetic energy of the
liquid, which then is transferred to potential energy as the bubble expands. In Case 2,
there is less potential energy stored in the liquid owing to the tail and subsequently
less kinetic energy and Kelvin impulse during collapse. This energy balance helps to
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Figure 12. (a) Plot of maximum bubble volume vs. work done by the LSW on the bubble.
Also plotted is a straight line of slope one passing through the origin of the graph. (b) Plot of
the maximum equivalent bubble radius, re,max , vs. work done by the LSW on the bubble. The
solid line is the relation between maximum radius and work by the spherical bubble model
described in Iloreta et al. (2007), rmax = 0.6238 W 0.337. The results of all simulations from Cases
1, 2 and 3 are shown. All quantities are dimensionless.

explain the results for Case 3 as well. As the work input is nearly the same at every
standoff distance for Case 3, the maximum volume, maximum kinetic energy, and
kinetic energy upon collapse are roughly constant with γ as shown in figures 9(a–c).
Note that while maximum volume and maximum kinetic energy increase slightly with
γ for Case 3 (see figures 9a and 9b), kinetic energy at collapse decreases slightly (see
figure 9c). The first two quantities are directly proportional to the work input, which
increases slightly with standoff distance for Case 3 owing to focusing of the LSW.
The kinetic energy upon collapse, however, is mildly enhanced by the wall, which has
less influence on the bubble the further away it is located. For all three cases, the
proximity of the wall has a very dramatic influence on the Kelvin impulse as shown
by its steep decline with increasing γ in figure 10(a).

The similarity between the plots of maximum volume and work vs. γ – as shown
in figures 9(a) and 11 – is striking and suggests a relationship between the two
quantities. The maximum volume versus the work input by the LSW on the bubble
is plotted in figure 12(a). The results for all cases clearly lie on a single straight line.
This is noteworthy given that, for a particular value of the work input, the standoff
distance and pressure waveform used as forcing differ for each of Cases 1–3, yet the
maximum volume is equal. The results in figure 12(a), therefore, strongly suggest that
the net work done by the LSW uniquely determines maximum volume, regardless of
the standoff distance of the bubble or the form of the LSW input.

We may compare the results in figure 12(a) for non-spherical bubbles to the model
of Iloreta et al. (2007) for spherical bubbles. In this model, a power-law relation was
derived between the work done on a spherical bubble and its maximum radius, rmax ,
using a Rayleigh–Plesset model incorporating gas diffusion, heat transfer, chemical
reactions, surface tension and viscosity. Using the dimensionless scales in table 1, this
relationship is given as

rmax = 0.6238 W 0.337. (7)
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Figure 13. Plots of (a) kinetic energy at collapse (jet impact), and (b) maximum (absolute
value of) Kelvin impulse vs. work done by the LSW on the bubble, for Cases 1 and 2 . Note
that these results are only valid for bubbles collapsing with a high degree of asymmetry (i.e.,
in the near region) and should not be extrapolated beyond the range shown. All quantities are
dimensionless.

Equation (7) was derived for bubbles with initial radius 4.5 μm, but is applicable to
our study as it was shown in Church (1989) and Iloreta et al. (2007) that maximum
radius (volume) is insensitive to initial radius. This finding is confirmed by our results
and will be discussed in § 4.1. We compare our results here in Part 2 to the relation
(7) by calculating an equivalent radius for the non-spherical bubble, re,max , in a
straightforward manner from its maximum volume, Vmax , using re,max = (3Vmax/4π)1/3.
If we then plot re,max versus the work input W calculated from (6) for each case,
we see that the results match very closely the relationship given by (7), as shown in
figure 12(b). This makes intuitive sense as the bubble is essentially spherical during
its interaction with the LSW and subsequent expansion.

It would be ultimately helpful to link the work done by the LSW with quantities
that are likely to correlate to damage of the underlying surface, such as kinetic
energy and Kelvin impulse. The value in this approach is the replacement of the
more complicated calculation of kinetic energy and Kelvin impulse for non-spherical
bubbles with the relatively simple calculation of work, which can be reliably predicted
through use of a spherical bubble model, as demonstrated above. For this reason we
plot the kinetic energy at collapse and the maximum Kelvin impulse vs. the net work
input in figures 13(a) and 13(b), respectively. We consider here only Cases 1 and 2 as
these include reflection from the surface and thus are more physically realistic. Note
that in figure 13(a) there is a strong one-to-one correlation between the work input
and the kinetic energy at collapse, regardless of whether or not the tail is included in
the forcing from the LSW. This trend does not hold for the Kelvin impulse as shown
by the distinct curves for Case 1 and Case 2 in figure 13(b). These results suggest
that kinetic energy at collapse could be reliably predicted through calculation of the
net work input from the LSW but not necessarily the maximum Kelvin impulse. For
determination of the Kelvin impulse at collapse, we must consider, for example, the
standoff distance and the details of the forcing input. Note that the trends shown
in figures 13(a) and 13(b) are only valid when the bubble is sufficiently close to the
surface that its collapse is strongly non-spherical (i.e. in the near region). Far from the
rigid boundary, the collapse will be approximately spherical yielding both a kinetic
energy and a Kelvin impulse upon collapse that are nearly zero.
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4. Discussion
The results presented thus far rest on several assumptions regarding the LSW–

bubble interaction: (i) the results are insensitive to the initial radius of the bubble;
(ii) the spatial gradient of the LSW can be neglected; (iii) the bubble is initially in
equilibrium when acted upon by the STP; and (iv) the initial tensile wave (ITW)
and reflected compressive wave (RCW) do not have a significant influence on the
dynamics when reflection is considered. In this section, we investigate the sensitivity
of our results to each of these assumptions. We restrict our analysis to Case 1 to
account for reflection, which is more physically realistic; Case 2 is not considered
as we have shown the results to be qualitatively similar to those of Case 1. Unless
otherwise stated, all simulation conditions – forcing from the LSW, initial radius, etc. –
are identical to those assumed for Case 1 in previous sections.

4.1. Dependence on initial radius

All previous results assume that the initial radius, R0, of the bubble is 25 μm. To
determine the sensitivity of the results to initial radius, R0 was varied in the range
of 15–50 μm and resulted in only a small change (10–20 %) in the maximum volume
of the bubble and other quantities of interest (e.g. kinetic energy, Kelvin impulse).
Note that a 20 % change in volume represents only about a 6 % change in radius
for a spherical bubble. The choice of initial radius also did not qualitatively alter
any of the trends of the data with respect to γ : enhancement occurs near the rigid
boundary and declines steeply further away. The results are not shown here for the
sake of brevity, but Calvisi (2006) shows plots of maximum volume, kinetic energy
at collapse, and maximum Kelvin impulse for Case 1 for three different values of R0:
15 μm, 25 μm (default value) and 50 μm.

The insensitivity of the results to initial radius has been shown in prior work,
although for spherical bubbles. In Church (1989), the response of spherical bubbles
in an infinite liquid subjected to excitation by a model LSW (similar to the one used
here) was investigated using the Gilmore–Akulichev formulation of bubble dynamics.
This model is similar to the Rayleigh–Plesset formulation, but includes compressible
effects as well as gas diffusion. For initial radii in the range of 1–10 μm, Church
(1989) showed there is very little variation in the maximum radius of the bubble
for LSWs with compressive shocks greater than ∼20 MPa. In addition, for LSW
profiles with an initial peak pressure greater than ∼30 MPa, similar to the LSW used
here, other quantities such as the minimum radius, collapse time, radiated pressure,
and the temperature inside the bubble demonstrate almost no dependence on R0.
The maximum bubble size is unaffected by the initial size as the amount of vapour
diffusing into the bubble during expansion far exceeds the initial quantity of gas
present (Matula et al. 2002). Ohl (2002) observed the explosive growth of cavitation
bubbles in the wake of an LSW and further modelled them using a Gilmore model,
which incorporates compressible effects. The experimental measurements matched
very closely the modelling results, which demonstrated that the maximum radius of
bubbles with initial radii in the range 0.1 μm � R0 � 100 μm varies less than 10 %.
Similarly, in Iloreta et al. (2007), a Rayleigh–Plesset model of spherical bubbles
incorporating gas diffusion, heat transfer, chemical reactions, surface tension, and
viscous effects was used to investigate the sensitivity of the bubble dynamics to initial
radius. It was determined that the maximum radius of a spherical bubble subject to
an LSW of a given strength is insensitive to R0 in the range of 1–10 μm, and it is likely
that other cavitation-related quantities are unaffected as well. However, maximum



86 M. L. Calvisi, J. I. Iloreta and A. J. Szeri

0 1 2 3 4 5

1

2

3

4

5

6

M
ax

im
u
m

 v
o
lu

m
e

 

 

No Spatial Gradient

Spatial Gradient  

1 2 3 4 50

1

2

3

4

5

6

M
ax

im
u
m

 k
in

et
ic

 e
n
er

g
y

 

1 2 3 4 50

1

2

3

4

Standoff distance, γ Standoff distance, γ

K
in

et
ic

 e
n
er

g
y
 a

t 
co

ll
ap

se

 

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ax

im
u
m

 K
el

v
in

 i
m

p
u
ls

e

 

(a)

(c) (d)

(b)

Figure 14. Plots of various dimensionless physical quantities comparing the results from the
default Case 1 both with and without spatial gradient. The STP of the LSW is used as forcing
input in both cases and the initial radius of the bubble is Ro = 25 μm. The plots shown are the
following: a) maximum volume vs. γ ; b) maximum kinetic energy vs. γ ; c) kinetic energy at
collapse vs. γ ; and d ) maximum Kelvin impulse vs. γ .

radius depends strongly on the total work input by the LSW (similar to that shown
in figure 12).

4.2. Effect of spatial pressure gradient

In § 2.2, we argued that owing to the small initial size of the bubble (25 μm) compared
to the length of the LSW (∼1 cm), the spatial gradient of the pressure field along
the axis of symmetry would not affect the bubble dynamics. Thus, we regarded the
pressure imposed by the LSW (as calculated in Part 1) as uniform across the bubble,
using only the pressure calculated at the bubble centroid to excite the bubble. Here we
incorporate into the forcing the spatial gradient of the STP – the only portion of the
LSW used to drive the bubble in Case 1 – and recalculate the quantities of maximum
volume, kinetic energy, Kelvin impulse, and centroid translation. The results of these
calculations are presented in figure 14 along with the results for the previous default
Case 1 without a spatial gradient. It is clear that the spatial gradient has a negligible
effect on the quantities of interest. Although the results for net centroid translation
are not shown, the effect of the spatial gradient is minor, increasing it only slightly.
It is also important to note that the spatial gradient does not cause any noticeable
aspherical deformation during its interaction with the bubble. The STP passes very
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quickly during which the bubble has little time to expand and its shape remains
effectively spherical. After passage of the STP, the bubble remains spherical during its
expansion phase and begins to deform non-spherically only during the collapse. This
demonstrates that the presence of the rigid boundary, and not the spatial gradient
of the STP, is the main factor in inducing non-spherical collapse and jetting. While
previous experimental studies of shock–bubble interaction in a free fluid (Ohl &
Ikink 2003; Sankin et al. 2005) show that the spatial gradient causes jetting along
the direction of shock propagation, in our case, the rigid boundary dominates this
process, thereby justifying our previous use of a uniform driving pressure.

4.3. Non-equilibrium conditions

Thus far we have assumed that the bubble is initially in equilibrium (i.e. stationary
and not oscillating) when acted upon by the STP. In actual SWL conditions, it is
unlikely that bubbles present in the urine space surrounding the kidney stone will be in
equilibrium after passage of the initial and reflected shocks. We therefore investigate
the dynamics of bubbles that are initially oscillating and compare the results to
our baseline results for equilibrium bubbles in Case 1. As the spatial gradient was
shown to have a negligible effect in § 4.2, we disregard it here as was done previously
throughout § 3. We may assume that after passage of the RCW, the bubble contents
are compressed, causing the bubble to re-expand. The subsequent STP then impacts
the bubble at some point during its rebound, e.g. during its expansion or collapse.
To simulate such a non-equilibrium bubble, we set the initial internal pressure of a
test bubble with R0 = 25 μm to be one hundred times that of the ambient far-field
pressure p0. Because of the overpressure, the bubble in the absence of any external
forcing will expand freely, achieving a maximum radius Rm,free. It is important to
distinguish Rm,free from Rm, which is the maximum radius of a bubble forced with
an STP at γ ≈ 1. In practice, Rm,free is much smaller (∼200 μm) than Rm (∼1100 μm).
Also, Rm,free varies only slightly with respect to γ , whereas the maximum bubble
volume due to forcing by the STP varies substantially with respect to γ (see figure 7).
We then allow the STP to interact with the non-equilibrium bubble at various stages
during its free oscillation and denote the radius of the bubble at the moment of
impact as Rhit . Note that Rm,free and Rhit are calculated separately for each γ and are
based on the volume, R = (3V/4π)1/3, which is meaningful as the free bubble remains
almost perfectly spherical throughout its oscillation.

Four non-equilibrium conditions for bubble–STP interaction are examined
assuming R0 = 25 μm and an initial overpressure factor of 100, which leads to
Rm,free ≈ 210 μm . These cases include the following: (i) Rhit =R0 (or Rhit/Rm,free = 0.12)
while momentarily stationary; (ii) Rhit/Rm,free = 0.50 during expansion; (iii)
Rhit/Rm,free = 1.00 while momentarily stationary; and (iv) Rhit/Rm,free = 0.50 during
collapse. A plot of radius versus time for the free bubble at γ = 1.0 is shown in
figure 15 along with the various non-equilibrium cases considered. Note the small
volume expansion relative to Case 1 (cf. figure 5a).

As the bubble may be compressed to a smaller size than 25 μm owing to the RCW,
we also examine a case with R0 = 4.5 μm, as assumed in Part 1, and an appropriate
overpressure so that it is not initially in equilibrium. To select the overpressure
of this smaller bubble, we match its initial potential energy to that of the default
equilibrium bubble with R0 = 25 μm. If we regard the potential energy as the product
of the pressure and volume, then a 4.5 μm bubble with an overpressure factor of 170
has approximately the same potential energy as a 25 μm bubble in equilibrium. In
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Figure 15. Plot of dimensionless (effective) radius vs. time for a non-equilibrium bubble
oscillating near a rigid boundary (γ = 1.0, R0 = 25 μm) in the absence of forcing from an
LSW, and with an initial overpressure factor of 100. In this case, Rm,free is the maximum
radius of the free oscillation and Rhit is the radius at the time of impact with the STP. The
various points during the oscillation cycle at which the bubble is contacted with the STP
are indicated with arrows, showing cases for expanding (E), stationary (S), and collapsing
(C) bubbles.

our simulation, we allow the STP to interact with this 4.5 μm bubble while initially
stationary.

Figure 16 shows plots of various quantities versus γ for the five non-equilibrium
conditions considered – four with R0 = 25 μm and initial overpressure factor of 100,
and one with R0 = 4.5 μm and an overpressure factor of 170. Also shown are the
results for Case 1 (R0 = 25 μm, initially in equilibrium). The STP from Case 1 is
used as the forcing in all the non-equilibrium simulations, the only difference being
the state of the bubble at the time of the interaction. While the initial state of the
bubble at the time of impact with the STP affects the magnitude of maximum volume,
kinetic energy and Kelvin impulse, it does not affect the basic trends with respect
to γ . In all cases, there is enhancement of maximum volume and collapse intensity
near the rigid surface and a steep monotonic decrease of these quantities as the
bubble standoff distance increases. A similar trend is observed for the net centroid
translation (not shown) except that a peak occurs around γ ≈ 1 similar to that seen in
figure 10(b). In the four non-equilibrium cases with R0 = 25 μm, the collapse intensity
is greater than that of the baseline equilibrium case, with the most intense collapses
occurring for Rhit/Rm,free = 1.00(S), when the bubble is momentarily stationary at
the time of STP-interaction. The results for the 4.5 μm bubble match almost exactly
those for the default 25 μm bubble in equilibrium. This suggests that the strength of
collapse may partially depend on the potential energy at the time of impact with
the LSW, along with the work input by the LSW. This is supported by the fact that
the potential energy of the non-equilibrium bubbles with R0 = 25 μm exceeds that of
an equilibrium bubble of the same size – owing to the higher initial overpressure –
and the magnitudes of the associated scalar measures are correspondingly higher.
Although this is an interesting observation, we do not explore this issue further
here.
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Figure 16. Plots of various dimensionless physical quantities comparing results from the
default Case 1 at equilibrium (“Equilibrium”) to those not initially at equilibrium. The STP
is used for the forcing input in all cases. For the first four non-equilibrium cases, the initial
radius is 25 μm, the overpressure factor is 100, and the bubble is contacted with the STP at
various stages during its oscillation cycle, as depicted in figure 15. Results from a fifth case
(“R0 = 4.5 μm (S)”) are shown for a bubble that is initially stationary with R0 = 4.5 μm and an
initial overpressure factor of 170. The results for this case match almost exactly those of the
Equilibrium case. The plots show the following physical quantities: a) maximum volume vs. γ ;
b) maximum kinetic energy vs. γ ; c) kinetic energy at collapse vs. γ ; and d ) maximum Kelvin
impulse vs. γ .

4.4. Influence of reflected compressive wave

For the simulations performed in Cases 1–3, the forcing was initiated at the start of
the STP. It was argued that this component of the LSW would be the main factor
in determining collapse intensity as it would contribute most to bubble growth, and
that the ITW and RCW would be of secondary importance. In this section, we test
this assumption by including both the ITW and RCW in the driving pressure. We
again neglect the spatial gradient of the LSW, as well as the influence of the ICW for
the same reasons as given in § 2.3. We then compare the results based on including
the ITW and RCW into the pressure input to those for our default Case 1 (which
only uses the STP). Two sets of initial conditions are considered at the onset of
the forcing by the ITW: (i) a bubble in equilibrium with R0 = 25 μm; and (ii) an
initially stationary bubble with R0 = 4.5 μm and an overpressure factor of 170. Note
that if we begin our simulations at the beginning of the RCW – thus neglecting the
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influence of the the ITW – then equilibrium bubbles collapse immediately owing to
the compression, with negligible intensity. Therefore, we include the action of the
ITW in order to set the bubble in outward motion before it encounters the RCW.

Values of maximum volume, kinetic energy and Kelvin impulse were calculated
using a forcing input due to the combined effect of the ITW, RCW and STP, which
we will refer to simply as the ‘RCW’ in the remainder of this subsection for simplicity.
There are two distinct responses to the RCW, depending on the standoff distance. For
small standoff distances (γ � 1.5), bubbles forced with the RCW collapse immediately
with negligible intensity, regardless of the initial conditions. For γ � 2, the scalar
quantities of interest due to forcing with the RCW exceed those for Case 1. This
behaviour is understood by considering the temporal spacing between the ICW and
RCW. Near the stone, the RCW occurs quickly after passage of the ICW so that
the time span of the intervening ITW is relatively short. This leads to only a modest
increase in bubble size and inertia before the subsequent RCW rapidly collapses the
bubble. For these bubbles, the simulation is halted when the distance between the
upper and lower nodes along the axis of symmetry decreases below a specified small
value (as discussed in § 2.5), and the simulation is not carried into the STP. The data
for these values of γ are not shown as this would erroneously suggest that bubble
collapses near the wall are not vigorous when, in fact, this is not the case. Bubbles
crushed by the RCW are expected to re-form and re-expand during the subsequent
rarefaction of the STP (see Lindau & Lauterborn 2003). These bubbles may then
expand to an appreciable volume and collapse with significant intensity as shown in
§ 3. The proper initial conditions at the start of the STP in this case are difficult to
ascertain; however, to a certain extent we have already addressed this issue in § 4.3
by exploring the sensitivity of the results to various initial conditions. To represent
faithfully the cavitation potential in the region near the rigid boundary, instead of
plotting the physical quantities due to forcing with the RCW, which are negligible,
we show the values from Case 1 for γ � 1.6 (see figure 17). This is equivalent to
assuming the bubble is in equilibrium with R0 = 25 μm after passage of the RCW.
Although this is unlikely, it has already been shown in § 4.1 that initial radius has
little effect on the dynamics, and also in § 4.3 that the initial state of the bubble does
not affect the overall trend of the data with respect to γ . In addition, the assumption
of equilibrium after RCW passage in the near-field is consistent with the analysis in
Part 1 for determining maximum bubble radius, thus allowing direct comparison. The
consistency of our results with Part 1 will be discussed further below.

For larger standoff distances (γ � 1.5), the ICW and RCW are separated further in
time, allowing the ITW to act on the bubble for a longer period (see figure 2a). This
increases the inertia of the fluid sufficiently so that the bubble survives the RCW. In
fact, the action of the RCW tends to cause only a brief, minor reversal or slowing of
the volume expansion at these larger values of γ . After passage of the RCW, the STP
causes further volume expansion, which exceeds that due to the action of the STP
alone. The larger volume expansion leads to an enhanced collapse intensity compared
to Case 1. The physical quantities of interest due to forcing with the RCW are plotted
in figure 17 for γ � 1.6.

In the case of forcing with the RCW, the results for γ � 1.6 are nearly identical
for the two sets of initial conditions considered: R0 = 25 μm in equilibrium and
R0 = 4.5 μm with a large overpressure. This mirrors the same findings in § 4.3 where
forcing was due to the STP only. Thus, it appears that in addition to the work input
by the LSW, the potential energy may be a strong predictor of the dynamics of the
collapse process.
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Figure 17. Plots of various dimensionless physical quantities showing results from 
, the
default Case 1 (forcing with the STP only) in the region γ � 1.6, and the results of two other
cases forced with the combined effect of the ITW, RCW and the STP for γ � 1.6. The two
latter cases include �, a bubble with Ro = 25 μm in equilibrium, and �, a stationary bubble
with Ro = 4.5 μm and an initial overpressure factor of 170. The spatial gradient of the LSW is
neglected in all cases. The plots show the following physical quantities: (a) maximum volume
vs. γ ; (b) maximum kinetic energy vs. γ ; (c) kinetic energy at collapse vs. γ ; and (d ) maximum
Kelvin impulse vs. γ .

The data shown in figure 17 represents a composite due to two different types
of forcing: the STP alone is used in the near region (Case 1), and the sequence
consisting of the ITW, RCW and STP is used further away. The quantities of interest
decline sharply with increasing distance from γ = 0.7 and reach a local minimum at
γ ≈ 1.6. Beyond this distance, the values increase, achieve a local maximum at γ ≈
2.0, and then decline slightly with increasing γ . The overall trends in figure 17 are
very similar to those shown in Part 1 for the calculation of the maximum radius of
spherical bubbles with respect to standoff distance. In the analysis of Part 1, forcing
was initiated at the start of the STP for bubbles near the kidney stone, but at the
start of the ITW for bubbles further away, similar to the representation in figure 17
for non-spherical bubbles. Consequently, the Part 1 results are very similar to those
shown in figure 17, and demonstrate a maximum bubble radius that declines steadily
with increasing distance and a local minimum around 2 mm, corresponding to γ = 1.7
here. The close agreement between the spherical model in Part 1 and the results for
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non-spherical bubbles presented here, further validates the use of (7) in predicting
maximum volume (or radius) for a given work input.

One discrepancy between the results of Part 1 and those presented in figure 17 is
the behaviour in the far field; for the former, maximum volume (or radius) levels
off to a constant value, and for the latter, maximum volume decreases slightly but
steadily with respect to standoff distance. This discrepancy can be explained through
the action of the tail portion of the LSW, which is included in Part 1 but not for
the results presented here. As the tail section is predominantly compressive, and is
stronger near the wall (see figure 3), it is likely that it would flatten out the local
maximum around γ ≈ 2.0 shown in figure 17. This would then yield a behaviour in
the far field similar to that shown in Part 1. Therefore, the relationship between the
maximum volume of non-spherical bubbles and standoff distance is consistent with
the purely spherical model in Part 1 even when the RCW is included.

The magnitudes of the physical quantities presented in figure 17 for γ � 1.6 are
larger than those shown in figures 9(a–c) and 10(a). This difference arises from the
initial conditions at the beginning of the STP. For the Case 1 study, the bubble is
initially in equilibrium whereas the results presented in this section for γ � 1.6 are
due to bubbles that are already expanding at the onset of the STP, because of the
influence of the ITW. As was shown in § 4.3, bubbles in expansion at the start of
the STP expand to larger volumes and collapse with greater intensity compared to
those initially in equilibrium (see figure 16). Hence, figure 17 is consistent with previous
results and indicates that the quantitative behaviour depends on initial conditions.
However, the main effect of reflection from the wall – enhancing cavitation collapse
in the near region and reducing it further away – is unaltered by the initial conditions
of the bubble.

A few further observations are worthy of comment regarding inclusion of the ITI
and RCW into the forcing input. First, for γ � 1.5 and spatial gradient neglected, the
bubble collapses suddenly and the shape remains spherical as there is insufficient time
for a jet to develop. If the spatial gradient of the LSW is taken into account for these
bubbles, it does not appreciably affect any of the quantitative results shown, but does
affect the shape behaviour. For example, for γ � 1.5, bubbles still collapse rapidly,
but the spatial gradient induces a flat jet in the direction of LSW propagation, toward
the wall, with a slightly higher centroid translation. Otherwise, the quantities of
maximum volume, kinetic energy and Kelvin impulse are still negligible. For bubbles
further away (γ � 1.5), the spatial gradient appears to have no significant effect
on either the shape dynamics or the main scalar quantities of interest. Regardless
of the inclusion or exclusion of the spatial gradient in the far region, the bubble
remains virtually spherical during passage of the RCW, and jet formation occurs only
during the collapse phase, long after the LSW has passed, as in Case 1. The only
quantity affected is the centroid translation (not shown), which is increased somewhat
(∼15–20 %) by the action of the spatial gradient.

4.5. The role of vapour

In our model, we have assumed the bubble contents to be comprised of a non-
condensable gas (argon) plus water vapour. In addition, evaporation and condensation
of vapour is modelled at the surface using the methods described by Szeri et al. (2003).
To assess the effect of vapour on bubble dynamics, several simulations were performed
without vapour inside the bubble and assuming no vapour transport at the bubble
surface. Again, the initial conditions from Case 1 were assumed and only the STP
portion of the LSW was used to drive the bubble. While the results are not shown
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here, our analysis indicates that the presence of vapour does not have an appreciable
effect on the dynamics of the bubble: the quantities of maximum volume, kinetic
energy, Kelvin impulse, and centroid translation are negligibly affected as well as
their trends with respect to γ . There is one exception, however, for bubbles located
relatively far from the boundary (γ � 3), the kinetic energy at collapse is ∼20 %
higher in the absence of vapour. For these cases, the bubble pressure is lower and
the bubble collapses to a smaller volume, with a maximum jet velocity ∼15 % higher.
Regardless, the maximum kinetic energy is unaffected by the presence or absence
of vapour. Vapour tends to lower temperatures inside the bubble as water vapour
dissociates at high temperatures (owing to rapid compression and adiabatic heating)
and undergoes mainly endothermic reactions that lower the bulk temperature (Storey
& Szeri 2000). Thus, when vapour is neglected, bubble temperatures are greater,
but this is offset by the reduced number of moles inside the bubble (as vapour is
not present to dissociate) and the pressure and minimum volume are reduced as a
result. When vapour is included, the temperatures can be several times lower and the
pressure several times greater than for the non-vapour case. Again, this only occurs
for γ � 3, but may have implications for the study of sonochemistry, for example.

As an aside, for bubbles that remain singly connected after the initial collapse,
the presence of vapour inside the bubble has been shown to increase the amplitude
and reduce the frequency of the afterbounces (Matula et al. 2002). This effect is not
relevant to our study as we are interested only in the initial collapse during which jet
impact causes the bubble to undergo a topological transition to a torus.

4.6. Jet velocity and compressible effects

Thus far, we have focused on the kinetic energy and Kelvin impulse, but jet velocity
may also be an important factor in assessing substrate damage. The maximum jet
velocity was calculated at each value of γ for all three cases, however, the results are
not shown here. Unlike other quantities that have been considered, the maximum jet
velocity in our simulations increases with larger standoff distance. Near the boundary,
the onset of jet development occurs earlier in the collapse cycle, when the bubble wall
velocity is relatively slow, resulting in lower jet speeds. Further from the boundary, the
bubble shrinks to a smaller minimum volume and jets form later in the collapse when
the bubble wall velocity is higher, allowing jets to achieve higher speeds. Figure 8
illustrates the decrease in minimum volume for increasing γ as well as the flattening of
the bubble underside at small γ , which retards the jet motion. Our results indicate that
for γ � 2.5, the maximum Mach number exceeds 0.5, and for higher standoff distances
can exceed 1.0. Although the limitations of our model preclude accurate calculations
of jet velocity at Mach numbers approaching and exceeding 1.0, they are in line with
other studies of shock–bubble interaction. For instance, Philipp et al. (1993) reported
jet velocities about half the speed of sound for shock–bubble interaction near a plastic
foil. Bourne & Field (1992) applied shocks to two-dimensional cavities in gelatin and
observed jet velocities exceeding that of the incident shock. Also, Ding & Gracewski
(1996) and Klaseboer et al. (2006) used different numerical methods to predict jet
velocities greater than the speed of sound for bubbles interacting with shock waves
in an infinite fluid.

Whereas the kinetic energy and Kelvin impulse may relate to damage caused by
normal stresses at the substrate surface (Tomita & Shima 1986), high jet velocities
can generate secondary shock waves that can induce damage as well (Bourne &
Field 1995; Ohl 2002; Lindau & Lauterborn 2003). Therefore, in assessing stone
comminution due to cavitation, the combined effect of these mechanisms must be
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considered. For a shock wave of given strength, the stresses induced on a nearby
surface will diminish with increasing distance. Thus, while jet velocity increases with
γ , the greatest damage incurred by secondary shock wave emission may occur for
bubbles in the mid-range. In contrast, the kinetic energy and Kelvin impulse are
greatest near the surface. Therefore, the influence of standoff distance on actual stone
damage is not immediately clear. This analysis is supported by Bourne & Field (1995)
who performed experiments on the asymmetric collapse of two-dimensional cavities
in gelatin owing to interaction with plane shock waves. They demonstrated that
for cavities near a rigid surface, the impact of jets was the primary contributor to
damage, whereas for cavities positioned further away, the main contributor to surface
damage was from the generation of secondary pressure waves that formed both at the
moment of jet impact and during rebound of the cavity. Understanding the relative
contributions to surface damage from both jet impact and secondary shock wave
emission, and linking these to the bubble dynamics, is worthy of further study, but is
beyond the scope of the present work.

Finally, we address the effects of compressibility that can become manifest for
certain bubble collapses. In short, compressible effects are not expected to alter the
qualitative trends with respect to γ shown here for the various quantities of interest.
The main effect of compressibility is energy loss from the bubble through radiation of
acoustic energy and shock waves. This predominantly occurs during the rebound of
the bubble after it reaches minimum volume, and also at the point of jet impact in the
case of a non-spherical collapse (Lindau & Lauterborn 2003; Sankin et al. 2005). Some
energy will be reflected during the initial stage of shock–bubble interaction – owing to
the large impedance mismatch between the gas and the liquid – and create an outward-
propagating rarefaction wave. Ding & Gracewski (1996) simulated this phenomenon
for a shock wave with a peak pressure of 20.5 MPa, but showed that the amplitude of
the rarefaction wave is small relative to the imposed shock pressure, and its effect is
localized to a small region surrounding the bubble. By comparison, the amplitude of
the pressure wave emitted due to the rebound far exceeds that of the initial rarefaction
wave. However, in the cases considered here, the jet impacts the opposite side of the
bubble before minimum volume (rebound) is reached and the simulation is halted
thereafter; thus, little energy is lost prior to this instant and is unlikely to affect the
overall dynamics. It then follows that quantities such as kinetic energy at collapse,
maximum Kelvin impulse, and centroid translation during the singly connected phase
are not likely to be appreciably affected by compressibility. Determination of these
quantities after transition to a toroidal geometry is not performed as the dissipative
mechanisms of this process will tend to reduce the damage potential after jet impact
(see § 2.5 for further discussion). In addition, as the fluid velocity is well below
the speed of sound during the expansion phase, long after the LSW has passed,
compressibility will have virtually no effect on maximum volume or the maximum
kinetic energy (the latter of which occurs during the very early stages of expansion).

5. Conclusions
The results presented here allow us to draw several conclusions regarding the non-

spherical collapse of bubbles excited by lithotripsy shock waves near a rigid surface. In
the near region, the incident and reflected lithotripter waves interfere constructively,
leading to enhanced bubble expansion and energetics of collapse as compared to
the case when reflection is omitted. Further from the wall, destructive interference
between the incident and reflected waves leads to a suppression of bubble dynamics.
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This effect of the rigid surface on the bubble dynamics holds regardless of the initial
bubble radius or its initial conditions (e.g. expanding, collapsing, or in equilibrium)
at the time of impact with the LSW. The initial state of the bubble, however, does
affect the magnitude of quantities such as kinetic energy and Kelvin impulse, but
the presence of the wall still causes enhancement in the near region and suppression
further away. In addition, the presence or absence of water vapour inside the bubble
does not have an appreciable effect on the overall dynamics, but can dramatically
alter the temperature and pressure in the bubble interior during collapse.

This work also yields several insights regarding the relationship between the LSW
and the collapse process. First, the spatial gradient of the LSW has little effect on
the bubble dynamics owing to both the small size of the bubble relative to the length
of the LSW, and the quick passage of the LSW relative to the expansion time of
the bubble. Thus, the non-spherical collapse is mediated by the asymmetry induced
in the flow by the rigid boundary and not the spatial gradient of the LSW. It has
also been shown that the STP is the main driver of the bubble dynamics, although
the ITW can contribute as well. For bubbles located sufficiently far from the rigid
boundary, the ITW can impart additional energy to the bubble – enough to overcome
the compressive effect of the RCW – and lead to more vigourous collapses than those
initiated by the STP alone. For bubbles located closer to the surface, the ITW has
little effect and the subsequent RCW causes rapid collapse with little intensity. It
was also demonstrated that the tail portion of the LSW significantly inhibits bubble
expansion and collapse. The tail reduces the effect of constructive and destructive
interference by the reflected wave, but by no means nullifies it.

In addition, we have shown that the maximum volume of the bubble is strongly
correlated to the net work input by the LSW, regardless of the standoff distance and
the presence or absence of reflection. Furthermore, the relationship between work
input and maximum volume for non-spherical bubbles matches almost exactly that
of a spherical bubble model by Iloreta et al. (2007). The relationship between work
input and kinetic energy at collapse, for bubbles near the wall, is similarly direct.
However, the dependence of Kelvin impulse on the work input is more subtle as it is
mediated by the standoff distance and the form of the LSW input.
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